Integrating Asynchronous Task Parallelism with

OpenSHMEM

Max Grossman, Vivek Kumar, Zoran Budimlic, Vivek Sarkar
Habanero Extreme Scale Software Research Group
Rice University

e OpenSHMEM Threading Group
* AsyncSHMEM Overview
* API Extensions

 Runtime Implementations
e Performance Evaluation
e Discussion of Contributions & Future Directions

OpenSHMEM Threading Group

Concerned with enabling safe use of OpenSHMEM in a multi-
threaded environment, motivated by growing benefits of hybrid

programming.

Takes a bottom-up approach to the general problem of thread
safety.

Three main proposals to date: MPI-like thread safety, Thread

Registration, Contexts

OpenSHMEM Threading Group

Approach Proposer Summary Performance | Programmability
Impact (Subjective)
MPI-like Manjunath Gorentla Different modes of thread- Small Overheads No change
Venkata safe or -unsafe execution, i.e. from
MPI_Init_thread contention
management
Thread Monika ten Any thread to make OSHMEM API Negligible Programmer
Registration Bruggencate et al. calls must be registered with extensions must remember
(OpenSHMEM 2014) the OSHMEM runtime. register/
Runtime manages thread- deregister calls

local data automatically.

Contexts James Dinan et al. Contexts encapsulate Major Negligible More explicit
(PGAS 2014) OpenSHMEM resources, management of
thread-safe access to contexts

contexts is user responsibility

* OpenSHMEM Threading Group
* AsyncSHMEM Overview
* API| Extensions

 Runtime Implementations
e Performance Evaluation
e Discussion of Contributions & Future Directions

AsyncSHMEM Overview

AsyncSHMEM targets the same problems as the thread-safety
proposals.

Looking at the problem top-down: how can we support
OpenSHMEM in a threading runtime to improve their use
together (productivity and performance).

Encourage asynchrony to protect against variability in future HPC
systems.

AsyncSHMEM Goals and Approach

 Extend OpenSHMEM API with unified capabilities for

asynchronous computational and communication tasks

* Develop two runtimes to support these API extensions:

1. Fork-Join Runtime constrains programming model in use of API
extensions to minimize impact on existing OpenSHMEM
applications (conservative option)

2. Offload Runtime offers a more flexible programming model,
and more opportunities for exploiting asynchrony, especially
for new applications (forward-looking option)

AsyncSHMEM Execution Model

AsyncSHMEM Under the Covers

Node, Node,

Master Master
Thread Worker Threads Thread Worker Threads

NN\ SN N\

Current OpenSHMEM Runtime [€—> Current OpenSHMEM Runtime

<€—>| AsyncSHMEM extensions
<€<—>| AsyncSHMEM extensions

Consistency with OpenSHMEM Semantics

Ordering, collectivity, atomicity semantics in AsyncSHMEM remain consistent
with existing OpenSHMEM specification.

Collectives: Each PE must take part, only one task per PE, and programmer
must ensure ordering (e.g. shmem _barrier all).

Ordering: Memory ordering guarantees based on task graph (e.g.
shmem_fence).

Atomicity: Atomic with respect to other local threads and other PEs (e.g.
shmem_add).

10

* OpenSHMEM Threading Group
* AsyncSHMEM Overview
* API Extensions

 Runtime Implementations
e Performance Evaluation
e Discussion of Contributions & Future Directions

11

Summary of New APIs

Environment Futures and promises
e shmem_worker_init * shmem_create_promise
e shmem_my_worker e shmem_future for promise
e shmem_n_workers e shmem_satisfy _promise
e shmem_future wait
Fork-join tasks e shmem_task future
e shmem_task shmem_task_await
e shmem_parallel_for
 shmem_task_scope_begin Communication-driven tasks
e shmem_task scope end e shmem_int task when

* shmem_int_task_when_any

12

Environment APIs --- Hello World Example

void shmem_worker_init(void (*entrypoint)(void *), void *data);
Initializes both the OpenSHMEM (using shmem_init and shmem_finalize) and work-
stealing runtimes. entrypoint is the root task of the PE. The number of worker threads
created is configurable by environment variable.

int shmem_my worker();
Returns a unique ID for the calling thread.

int shmem_n_workers();
Returns the number of threads in the thread pool for the calling PE.

void entrypoint(void *args) {

printf(“This is thread %d, PE %d\n”, shmem my worker(), shmem my pe());

}

int main(int argc, char** argv) {
shmem_worker_init(entrypoint, NULL);

13

Creating an asynchronous task: shmem_task()

void shmem_ task(void (*body)(void *), void *data);
Creates an asynchronous task defined by body (like “begin” construct in Chapel)

void foo(void *data) {// Body of child task

}

void entrypoint(void *args) { // Body of root task
shmem_task(foo, NULL);
}

int main(int argc, char** argv) {
shmem_worker_init(entrypoint, NULL);

}

14

Creating a range of parallel tasks: shmem_parallel_for()

void shmem_parallel for(int lower_bound, int upper_bound,
void (*body)(int, void *), void *data);
Efficiently creates a batch of tasks, one for each integer in the range [lower_bound, upper_bound).
There is no implicit synchronization at the end of a call to shmem_parallel for.

void foo(int iter, void *data) {
printf(“Hello from parallel iteration %d\n”, iter);
}

void entrypoint(void *args) { // Create 100 tasks with indices ©..99
shmem_parallel for(©, 100, foo, NULL);
}

int main(int argc, char** argv) {
shmem_worker_init(entrypoint, NULL);

}

15

API Extensions: Join synchronization for parallel tasks

void shmem_task scope begin();

void shmem_task scope_end();
Starts and ends a task synchronization scope. Like Chapel’s “sync” construct, shmem_task scope_end()
waits on all tasks created in scope before returning control to the calling task. Task scopes may be nested.

void foo(void *data) {
shmem_task(bar, NULL);

}

void entrypoint(void *args) {
shmem_task scope_begin();

{
shmem_task(foo, NULL);
shmem_task(baz, NULL);

}

shmem_task scope end(); // Wait for tasks foo, bar, baz

APl Extensions: Futures and Promises

shmem_promise_t *shmem create promise();
shmem_future_t *shmem future for_ promise(shmem_promise_t *promise);
Create promise and future objects (akin to std::future and std::promise in C++).

Promise

Read-only pipe
LOF P Future

Single-assignment
value

void entrypoint(void *args) {
shmem_promise_t *promise = shmem_create promise();
shmem_future_t *future = shmem future_ for promise(promise);

17

API Extensions: Futures and Promises (contd)

Store a value into a single-assignment promise.

void *shmem future wait(shmem_ future_ t *future);
Wait for a future to be satisfied, and return its value.

void shmem_satisfy promise(shmem promise t *promise, void *data);

void producer(void *data) {
shmem_satisfy promise((shmem promise t *)data, NULL);

}

void consumer(void *data) {
void *result = shmem future wait((shmem_ future_t *)data);

}

shmem_task(producer, promise);
shmem_task(consumer, shmem_future_ for_ promise(promise));

18

API Extensions: Futures and Promises (contd)

void shmem task await(shmem future_t *future, void (*body)(void *data), void *data);
Create an asynchronous task whose execution is predicated on the satisfaction of the specified future.

void producer(void *data) {
shmem_satisfy promise((shmem promise t *)data, NULL);

}

void consumer(void *data) {
// Only starts executing after producer satisfies the promise

}

shmem_async(producer, promise);

shmem task await(shmem future for promise(promise), consumer, NULL);

19

Example of DAG parallelism using futures

Futures enable more complex dependency graphs than fork-join tasks

void task 4(void *task4 prom) {

// some computation Task_4 Task_1
shmem_satisfy promise((shmem_promise_t *)task4 prom);
} Task 3
void task 5(void *task5 prom) {
// some computation Task 5
shmem_satisfy promise((shmem_promise_t *)task5 prom);
} Task_2
shmem_task await(task 1, args, shmem future_ for promise(task4 prom)); g
shmem task await(task 2, args, shmem future for promise(task5 prom));

shmem _task await(task 3, args, shmem future for promise(task4 prom),
shmem future for promise(task5_ prom));

shmem_task(task 4, task4 prom);

shmem_task(task_ 5, task5 _prom);

20

APl Extensions: Communication-Driven Tasks

void shmem_int task when(int *ivar, int cond, int value,
void (*body)(void *), void *data);
Create an asynchronous task when the specified condition is satisfied on the specified location in the symmetric
heap. Analogous to shmem_int wait until, except that this call never blocks.

void shmem_int task when_any(int **ivars, int cond, int *values,
void (*body)(void *), void *data);
Same as shmem_int task when, but allows waiting for any of multiple conditions.

Communication-driven tasks allow remote communication to trigger asynchronous
task creation on a PE.

Analogous to existing shmem_wait APIs, but these APIs do not block, and also

offer single- and multi-condition variants.
21

Example with Communication-Driven Tasks

PE © PE 1

void load balancer(void *data) {

// Load balancing logic here, // Called periodically to update PE
// based on updated info from // © with info for distributed work
// remote PE // stealing

cee shmem_int_ put(remote_pe 1load,

// Re-register load balancer to local pe load, 1, 0);

// handle new updates from PE 1
shmem_int_task when(...);

}

shmem_int task when(remote_pe load,
SHMEM CMP_NE, *remote_pe_ load,
load balancer, NULL);

22

* OpenSHMEM Threading Group
* AsyncSHMEM Overview
* API Extensions

e Runtime Implementations

e Performance Evaluation
e Discussion of Contributions & Future Directions

23

AsyncSHMEM Under the Covers (Recap)

Node,

Worker Threads

We have two implementations of the
AsyncSHMEM API:

* Fork-Join runtime

* Offload runtime

Both fundamentally based on the same
system design: work-stealing, multi-
threaded runtime paired with an
OpenSHMEM implementation.

Master
Thread

<\ \>
<§t

<€<—>| AsyncSHMEM extensions

Current OpenSHMEM Runtime

24

Fork-Join Runtime

Similar to current
OpenSHMEM+OpenMP

programming, but with
more asynchronous

features e.g., future tasks.

Root task in
OpenSHMEM PE

No communication calls
allowed from child tasks

E L S 4 E

Only root task can make
communication calls

Root task in
OpenSHMEM PE

shmem_worker_init()

shmem_task_scope_begin{)

>

shmem_task scope_end()

25

Offload Runtime

steal PEO PE 1

put

lock RDMA

barrier_
all

o Tos S

v

Computation Computation Communication

Worker Worker Worker _
i Computation

OpenSHMEM Worker
Implementation

26

Offload Runtime (cont’d)

Example lifetime of a shmem _int put in the offload runtime:

1. Arguments to the shmem int put call are wrapped in a task, placed at the
communication worker.

2. Calling task is suspended, current worker thread picks up another task.

3. Communication worker eventually picks up shmem int put task and
performs the shmem _int put call.

4. Suspended task is re-inserted into work-stealing runtime.

27

* OpenSHMEM Threading Group
* AsyncSHMEM Overview
* API Extensions

 Runtime Implementations
 Performance Evaluation

e Discussion of Contributions & Future Directions

28

Application Benchmarks

Extensions to OpenSHMEM are in part being validated through application
benchmarks.

Application focus to date:
 UTS - Unbalanced tree search
* |Sx — Distributed integer sort

* Graph500 — Distributed graph search (in-progress)

Evaluation shown today performed on Titan system at ORNL.

29

ISx benchmark — Fork-Join approach, weak scaling

Total execution time (seconds)

25
20
15
10 -
5 -
0 -
32 64 128 256 512 1024
Total nodes on Titan (16 cores per node)
I OpenSHMEM BN AsyncSHMEM

s OpenSHMEM+OpenMP

(a) Total execution time

30

UTS results

AsyncSHMEM

UTS (T1XXL) — Offload approach integration improves

300 computation-

250 communication
0 overlap, scalabilit
< 200 P, y
(O]
S
= 150
c
i)
5 100
O
(O]
> 50
©
s o-

32 64 128 256 512 1024
Total nodes on Titan (16 cores per node)
I OpenSHMEM+OpenMP EE AsyncSHMEM

I OpenSHMEM+OpenMP Tasks

31

* OpenSHMEM Threading Group

* AsyncSHMEM Overview

* API Extensions

 Runtime Implementations

* Performance Evaluation

* Discussion of Contributions & Future Directions

32

Contributions

Key contributions:

1. OpenSHMEM extensions for expressing parallelism, tying parallelism and
communication together.

2. Two implementations of these extensions.

APl extensions for parallelism motivated by Habanero model, with the addition
of APIs that connect OpenSHMEM communication with task-parallel execution.

Fork-Join runtime minimizes changes to system behavior of existing
OpenSHMEM applications, constrains programming model.

Offload runtime maximizes integration, with more flexible programming
model.

33

* Explore integration of asynchronous APIls with OpenSHMEM collectives

* Explore extending AsyncSHMEM API, runtime for distributed load balancing.

 Remote tasking (see Sid’s talk at 11:30am)

* Explore additional applications in AsyncSHMEM (suggestions welcome),
explore algorithmic improvements to current applications enabled by

OpenSHMEM

 Continue to improve performance analysis methodology and bottleneck
guantification, build more performance metrics into AsyncSHMEM

34

Acknowledgements

A

- Los Alamos

NATIONAL LABORATORY
EST.1943

35

